Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo

نویسندگان

  • Thomas Deneux
  • Attila Kaszas
  • Gergely Szalay
  • Gergely Katona
  • Tamás Lakner
  • Amiram Grinvald
  • Balázs Rózsa
  • Ivo Vanzetta
چکیده

Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators. Model parameters can be either provided by the user or estimated from the data themselves. MLspike is computationally efficient thanks to its original discretization of probability representations; moreover, it can also return spike probabilities or samples. Benchmarked on extensive simulations and real data from seven different preparations, it outperformed state-of-the-art algorithms. Combined with the finding obtained from systematic data investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the main limiting factor, our method allows spike extraction from large-scale recordings, as demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data

In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we ...

متن کامل

Efficient and accurate extraction of 1 in vivo calcium signals from 2 microendoscopic video data

In vivo calcium imaging through microendoscopic lenses enables imaging of previously 26 inaccessible neuronal populations deep within the brains of freely moving animals. However, it is 27 computationally challenging to extract single-neuronal activity from microendoscopic data, because 28 of the very large background fluctuations and high spatial overlaps intrinsic to this recording 29 modalit...

متن کامل

Inference of neuronal network spike dynamics and topology from calcium imaging data

Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence ("spike trains") from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a ...

متن کامل

Recovering Spikes from Noisy Neuronal Calcium Signals via Structured Sparse Approximation

Two-photon calcium imaging is an emerging experimental technique that enables the study of information processing within neural circuits in vivo. While the spatial resolution of this technique permits the calcium activity of individual cells within the field of view to be monitored, inferring the precise times at which a neuron emits a spike is challenging because spikes are hidden within noisy...

متن کامل

An Overview of Bayesian Methods for Neural Spike Train Analysis

Neural spike train analysis is an important task in computational neuroscience which aims to understand neural mechanisms and gain insights into neural circuits. With the advancement of multielectrode recording and imaging technologies, it has become increasingly demanding to develop statistical tools for analyzing large neuronal ensemble spike activity. Here we present a tutorial overview of B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016